30,311 research outputs found

    Integrating clinical data from cross-sectional and longitudinal studies

    Get PDF
    Clinical trials are typically conducted over a population in order to illuminate certain characteristics of a health issue or disease process. These cross-sectional studies provide a snapshot of these disease processes over a large population but do not allow us to model the temporal nature of disease. Longitudinal studies on the other hand, are used to explore how these processes develop over time but can be expensive and time-consuming, and only cover a relatively small window within the disease process. This paper explores a technique for integrating cross-sectional and longitudinal studies to build models of disease progression

    The pseudotemporal bootstrap for predicting glaucoma from cross-sectional visual field data

    Get PDF
    Progressive loss of the field of vision is characteristic of a number of eye diseases such as glaucoma, a leading cause of irreversible blindness in the world. Recently, there has been an explosion in the amount of data being stored on patients who suffer from visual deterioration, including visual field (VF) test, retinal image, and frequent intraocular pressure measurements. Like the progression of many biological and medical processes, VF progression is inherently temporal in nature. However, many datasets associated with the study of such processes are often cross sectional and the time dimension is not measured due to the expensive nature of such studies. In this paper, we address this issue by developing a method to build artificial time series, which we call pseudo time series from cross-sectional data. This involves building trajectories through all of the data that can then, in turn, be used to build temporal models for forecasting (which would otherwise be impossible without longitudinal data). Glaucoma, like many diseases, is a family of conditions and it is, therefore, likely that there will be a number of key trajectories that are important in understanding the disease. In order to deal with such situations, we extend the idea of pseudo time series by using resampling techniques to build multiple sequences prior to model building. This approach naturally handles outliers and multiple possible disease trajectories. We demonstrate some key properties of our approach on synthetic data and present very promising results on VF data for predicting glaucoma

    Geometry and dynamics of vortex sheets in 3 dimensions

    Get PDF
    We consider the properties and dynamics of vortex sheets from a geometrical, coordinate-free, perspective. Distribution-valued forms (de Rham currents) are used to represent the fluid velocity and vorticity due to the vortex sheets. The smooth velocities on either side of the sheets are solved in terms of the sheet strengths using the language of double forms. The classical results regarding the continuity of the sheet normal component of the velocity and the conservation of vorticity are exposed in this setting. The formalism is then applied to the case of the self-induced velocity of an isolated vortex sheet. We develop a simplified expression for the sheet velocity in terms of representative curves. Its relevance to the classical Localized Induction Approximation (LIA) to vortex filament dynamics is discusse

    An Interview With Albert W. Tucker

    Get PDF
    The mathematical career of Albert W. Tucker, Professor Emeritus at Princeton University, spans more than 50 years. Best known today for his work in mathematical programming and the theory of games (e.g., the Kuhn-Tucker theorem, Tucker tableaux, and the Prisoner\u27s Dilemma), he was also in his earlier years prominent in topology. Outstanding teacher, administrator and leader, he has been President of the MAA, Chairman of the Princeton Mathematics Department, and course instructor, thesis advisor or general mentor to scores of active mathematicians. He is also known for his views on mathematics education and the proper interplay between teaching and research. Tucker took an active interest in this interview, helping with both the planning and the editing. The interviewer, Professor Maurer, received his Ph.D. under Tucker in 1972 and teaches at Swarthmore College

    Differential thermal analysis of lunar soil simulant

    Get PDF
    Differential thermal analysis of a lunar soil simulant, 'Minnesota Lunar Simulant-1' (MLS-1) was performed. The MLS-1 was tested in as-received form (in glass form) and with another silica. The silica addition was seen to depress nucleation events which lead to a better glass former
    corecore